Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Blood ; 143(16): 1599-1615, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38394668

RESUMO

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Linfócitos T , Animais , Humanos , Camundongos , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos
2.
Nat Cancer ; 5(4): 601-624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413714

RESUMO

Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.


Assuntos
Arginina , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Nucleotidiltransferases , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Arginina/metabolismo , Metilação/efeitos dos fármacos , Animais , Camundongos , Interferon Tipo I/metabolismo , Dano ao DNA , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
3.
Adv Sci (Weinh) ; 11(11): e2305885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161214

RESUMO

Resistance to chemotherapy remains a formidable obstacle in acute myeloid leukemia (AML) therapeutic management, necessitating the exploration of optimal strategies to maximize therapeutic benefits. Venetoclax with 3+7 daunorubicin and cytarabine (DAV regimen) in young adult de novo AML patients is evaluated. 90% of treated patients achieved complete remission, underscoring the potential of this regimen as a compelling therapeutic intervention. To elucidate underlying mechanisms governing response to DAV in AML, quantitative phosphoproteomics to discern distinct molecular signatures characterizing a subset of DAV-sensitive patients is used. Cluster analysis reveals an enrichment of phosphoproteins implicated in chromatin organization and RNA processing within DAV-susceptible and DA-resistant AML patients. Furthermore, kinase activity profiling identifies AURKB as a candidate indicator of DAV regimen efficacy in DA-resistant AML due to AURKB activation. Intriguingly, AML cells overexpressing AURKB exhibit attenuated MCL-1 expression, rendering them receptive to DAV treatment and maintaining them resistant to DA treatment. Moreover, the dataset delineates a shared kinase, AKT1, associated with DAV response. Notably, AKT1 inhibition augments the antileukemic efficacy of DAV treatment in AML. Overall, this phosphoproteomic study identifies the role of AURKB as a predictive biomarker for DA, but not DAV, resistance and proposes a promising strategy to counteract therapy resistance in AML.


Assuntos
Leucemia Mieloide Aguda , Adulto Jovem , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sulfonamidas/uso terapêutico
4.
Exp Hematol Oncol ; 12(1): 87, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794441

RESUMO

Nucleophosmin (NPM1) is a widely expressed nucleocytoplasmic shuttling protein with prominent nucleolar localization. It is estimated that 25-35% of adult patients with acute myeloid leukemia (AML) carry NPM1 mutations. The classic NPM1 type A mutation occurs in exon 12, which accounts for 75-80% of adult patients with NPM1-mutated AML. It produces an additional leucine and valine-rich nuclear export signal (NES) at the C-terminus, and causes aberrant cytoplasmic dislocation of NPM1 protein. Notably, emerging evidence indicates that besides the classic type A mutation, rare mutants occurring in other exons may also lead to the imbalance of the nucleocytoplasmic shuttle of NPM1. Identification of novel non-type A mutants is crucial for the diagnosis, prognosis, risk stratification and disease monitoring of potential target populations. Here we reported a novel NPM1 mutation in exon 5 identified from a de novo AML patient. Similar to the classic type A mutation, the exon 5 mutation had the NPM1 mutant bound to exportin-1 and directed the mutant into the cytoplasm by generating an additional NES sequence, resulting in aberrant cytoplasmic dislocation of NPM1 protein, which could be reversed by exportin-1 inhibitor leptomycin B. Our findings strongly support that besides the exon 12 mutation, the exon 5 mutant is another NPM1 "born to be exported" mutant critical for leukemogenesis. Therefore, similar to the classic type A mutation, the identification of our novel NPM1 mutation is beneficial for clinical laboratory diagnosis, genetic risk assessment and MRD monitoring.

5.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909542

RESUMO

Elimination of drug-resistant leukemia stem cells (LSCs) represents a major challenge to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), the presence of CD34 and lack of CD38 expression (CD34posCD38neg) are immunophenotypic features of both LSC-enriched AML blasts and normal hematopoietic stem cells (HSCs). We report that IFN-γ induces CD38 upregulation in LSC-enriched CD34posCD38neg AML blasts, but not in CD34posCD38neg HSCs. To leverage the IFN-γ mediated CD38 up-regulation in LSCs for clinical application, we created a compact, single-chain CD38-CD3-T cell engager (CD38-BIONIC) able to direct T cells against CD38pos blasts. Activated CD4pos and CD8pos T cells not only kill AML blasts but also produce IFNγ, which leads to CD38 expression on CD34posCD38neg LSC-enriched blasts. These cells then become CD38-BIONIC targets. The net result is an immune-mediated killing of both CD38neg and CD38pos AML blasts, which culminates in LSC depletion.

6.
Cell Death Dis ; 13(12): 1026, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476988

RESUMO

Hematological and neurological expressed 1 like (HN1L) is a newly identified oncogene in lung cancer and hepatocellular carcinoma recently identified by our team, but its roles in the development and treatment of esophageal squamous cell carcinoma (ESCC) remain incompletely cataloged. Here, using ESCC tissue array and public database analysis, we demonstrated that HN1L was highly expressed in ESCC tissues, which was associated with tumor tissue invasion, poor clinical stage and short survival for ESCC patients. Loss- and gain-of-function studies in ESCC cells revealed that HN1L enhances ESCC cell metastasis and proliferation in vitro and in mice models. Moreover, high level of HN1L reduces the sensibility of ESCC cells to chemotherapeutic drugs, such as Docetaxel. Mechanism studies revealed that HN1L activated the transcription of polo-like kinase 1 (PLK1) by interacting with transcription factor AP-2γ, which increased the expression of malignancy related proteins Cyclin D1 and Slug in ESCC cells. Blocking PLK1 with inhibitor BI-2356 abrogated the oncogenic function of HN1L and significantly suppressed ESCC progression by combining with chemotherapy. Therefore, this study demonstrates the vital pro-tumor role of HN1L/AP-2γ/PLK1 signaling axis in ESCC, offering a potential therapeutic strategy for ESCC patients with high HN1L by blocking PLK1.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Fator de Transcrição AP-2 , Humanos , Quinase 1 Polo-Like
7.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5316-5326, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472039

RESUMO

To elucidate the mechanism of Euodiae Fructus stir-fried with water decoction of Coptidis Rhizoma in the treatment of chronic colitis, this study employed ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, and experimental verification to predict the involved targets and signaling pathways. The chronic colitis mouse model was constructed to verify the core targets. A total of 48 compounds in the herbal medicine were identified by UPLC-Q-TOF-MS. SwissTargetPrediction was used to screen the potential active components and drug targets. GeneCards, OMIM, PharmGKB, and TDD were used to search for the disease targets. A total of 31 active ingredients, 453 targets of the herbal medicine, and 3 960 targets of chronic colitis were obtained. The common targets shared by the herbal medicine and chronic colitis were introduced into STRING to construct the protein-protein interaction(PPI) network, and CytoNCA plug-in was used to screen the key targets. A total of 90 key targets were obtained, and the key active components included isorhamnetin, quercetin, limonin, and oxyberberine. GO annotation and KEGG pathway enrichment for the key targets were carried out via DAVID. The targets were mainly involved in the positive regulation of protein phosphorylation, positive regulation of nitric oxide biosynthetic process, and negative regulation of apoptotic process. The medicine may treat chronic colitis through PI3 K-Akt, VEGF, HIF-1, and TNF signaling pathways. A mouse model of chronic colitis was established and then treated with Euodiae Fructus stir-fried with the water decoction of Coptidis Rhizoma. The experimental results demonstrated that the medicine can alleviate the pathological damage of colon, significantly reduce the levels of IL-1ß, IL-6, and TNF-α, inhibit the activation of PI3 K/Akt pathway, and down-regulate the expression of VEGFA in the treatment of chronic colitis.


Assuntos
Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Água , Medicamentos de Ervas Chinesas/farmacologia , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Colite/tratamento farmacológico , Doença Crônica , Simulação de Acoplamento Molecular
10.
Int J Gen Med ; 15: 1919-1931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237066

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. METHODS: Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. RESULTS: A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan-Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. CONCLUSION: The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.

11.
J Oncol ; 2022: 2647825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132319

RESUMO

The serine protease inhibitor clade E member 1 (SERPINE1) is a major inhibitor of tissue plasminogen activator and urokinase, and has been implicated in the development and progression of a variety of tumors. In this study, mRNA microarray and TCGA database were used to comprehensively analyze the upregulation of SERPINE1 in gastric cancer (GC) tissues compared with the normal stomach tissues. Kaplan-Meier results confirmed that patients with high SERPINE1 expression exhibited worse overall survival and disease-free survival. In addition, cell proliferation, cell scratches, transwell migration and invasion assay showed that SERPINE1 knockdown inhibited the proliferation, migration and invasion of GC ells. Western blot showed that the expression of VEGF and IL-6 was significantly upregulated after overexpression of SERPINE1. Meanwhile, SERPINE1 was positively correlated with the level of immune infiltration using the online analysis tools TISIDB and TIMER. And SERPINE1 expression increased with the increase of malignancy of GC which were detected by Immunohistochemistry. Finally, tumorigenesis experiments in nude mice further demonstrated that SERPINE1 could promote the occurrence and development of GC, while deletion of SERPINE1 inhibited the progression of GC. In summary, SERPINE1 was highly expressed in GC tissues, and SERPINE1 was helpful for differential diagnosis of pathological grade of gastric mucosal lesions. SERPINE1 might regulate the expression of VEGF and IL-6 through the VEGF signaling pathway and JAK-STAT3 inflammatory signaling pathway, thus ultimately affecting the invasion and migration of GC cells.

12.
Oncogene ; 41(4): 515-526, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782720

RESUMO

Metastasis is the leading cause of death of patients with esophageal squamous cell carcinoma (ESCC). Although an increasing number of studies have demonstrated the involvement of G3BP2 in several human cancers, how G3BP2 interacts with long noncoding RNAs and regulates mRNA transcripts in mediating ESCC metastasis remains unclear. In this study, we uncovered that G3BP2 was upregulated in ESCC. Further analysis revealed that upregulation of G3BP2 was significantly correlated with lymph node metastasis, depth of tumor invasion and unfavorable outcomes in ESCC patients. Both in vitro and in vivo functional assays demonstrated that G3BP2 dramatically enhanced ESCC cell migration and invasion. Mechanistically, LINC01554 maintained the high G3BP2 expression in ESCC by protecting G3BP2 from degradation through ubiquitination and the interaction domains within LINC01554 and G3BP2 were identified. In addition, RNA-seq revealed that HDGF was regulated by G3BP2. G3BP2 bound to HDGF mRNA transcript to stabilize its expression. Ectopic expression of HDGF effectively abolished the G3BP2 depletion-mediated inhibitory effect on tumor cell migration. Intriguingly, introduction of compound C108 which can inhibit G3BP2 remarkedly suppressed ESCC cell metastasis in vitro and in vivo. Collectively, this study describes a newly discovered regulatory axis, LINC01554/G3BP2/HDGF, that facilitates ESCC metastasis and will provide novel therapeutic strategies for ESCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Camundongos , Camundongos Nus , Transfecção , Regulação para Cima
13.
J BUON ; 26(5): 1931-1941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761602

RESUMO

PURPOSE: Colon adenocarcinoma (COAD) is globally one of the most frequently occurring malignant tumors. The patients' 5-year survival rate with colon cancer was poor. There is a usual form of mRNA modification called N6-methyl adenosine (m6A). It is adjusted by the m6A RNA methylation modulator. Nevertheless, few studies of COAD can fully discuss m6A-related lncRNAs' prognostic function. METHODS: From The Cancer Genome Atlas (TCGA) database, this study of COAD samples discussed 23 m6A regulator-related lncRNAs systemically. 2 m6A patterns with various clinical results were recognized, and a remarkable correlation between various m6A clusters and tumor immune microenvironment was discovered. RESULTS: According to prognostic analysis, cluster1 had a higher immune checkpoint programmed death-ligand 1 (PD-L1) expression and a better prognosis. A 6 m6A-related lncRNAs model was constructed through least absolute shrinkage and selection operator (LASSO), univariate, multivariate Cox regression and stratified analysis. The outcomes reported that compared with the low-risk group, high-risk groups that were based on model closely were related to poor overall survival (OS). The study ensured a risk model consisting of 6 m6A-related lncRNAs as independent prognosis predictors. For the expression differences between the two groups, Genomes Pathway Analysis, Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology (GO) biological process analyses were conducted. In addition, on the basis of full analysis of OS, a nomogram based on gender, age, lncRNA feature and the stage was constructed. One year, two years, and three years are the periods when the calibration chart performed best. CONCLUSIONS: The outcomes of the study confirmed the underlying function of m6A-related lncRNAs and offered fresh perspectives to COAD prognosis.


Assuntos
Adenocarcinoma/imunologia , Adenosina/análogos & derivados , Neoplasias do Colo/imunologia , RNA Longo não Codificante/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenosina/genética , Adenosina/fisiologia , Neoplasias do Colo/genética , Neoplasias do Colo/mortalidade , Humanos , Prognóstico , Taxa de Sobrevida
14.
J Gastrointest Oncol ; 12(5): 2132-2149, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790380

RESUMO

BACKGROUND: The Homeobox B (HOXB) family promotes tumor progression, but the mechanism of its action in gastric cancer (GC) is unclear. We sought to identify the HOXB family members that are critical to the prognosis of GC patients. METHODS: The Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, UALCAN, Kaplan-Meier plotter, and the GeneMANIA databases were used to analyze the messenger RNA (mRNA) expression levels, prognostic value, and gene-gene interaction network of the HOXB9 family members in GC. The expression of HOXB9 in GC and its relationship with various clinicopathological parameters and the prognosis of patients were verified by immunohistochemistry. RESULTS: The expression of HOXB3, HOXB5, HOXB6, HOXB7, HOXB9, and HOXB13 mRNA was significantly upregulated in GC. There was a significant correlation between the upregulation of HOXB3, HOXB5, and HOXB9 mRNA and a low overall survival (OS) rate. The high expression of HOXB7, HOXB9, and HOXB13 mRNA was closely correlated to tumor grade and stage. HOXB9 was the HOXB family member most closely related to the occurrence and development of GC. A further analysis showed that HOXB9 might be involved in deoxyribonucleic acid repair and division regulation. A validation study showed that the advanced cancer group had a higher level of HOXB9 expression than the early cancer group. The high expression of HOXB9 in gastric tissue plays an important role in the survival and prognosis of GC patients. CONCLUSIONS: HOXB family members have different degrees of abnormal expression in GC. High HOXB9 expression in GC tissues was significantly correlated with a worse prognosis. Thus, HOXB9 is a potential novel biomarker and therapeutic target for GC.

15.
J Gastrointest Oncol ; 12(5): 2157-2171, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790382

RESUMO

BACKGROUND: Colon adenocarcinoma (COAD) is one of the most common malignancies worldwide. Genomic instability is one of the hallmarks of colon cancer and is associated with prognosis. Nevertheless, the impact of genome instability-associated long non-coding RNAs (lncRNAs) along with their clinical significance in cancers has remained mostly unexplored. METHODS: In this study, a mutator hypothesis-derived computational frame integrating the somatic mutation profiles and lncRNA expression profiles in a tumor genome was developed, which enabled the identification of 137 novel genomic instability-associated lncRNAs in colon cancer. Subsequently, a genome instability-derived lncRNA signature (GILncSig) segregated the patients into low- and high-risk groups with prominent differences in outcomes. RESULTS: Combined with the overall survival data, we established 6 six lncRNA-based signature to predict prognosis, which were LINC00896, AC007996.1, NKILA, AP003555.2, MIRLET7BHG, and AC009237.14. We found that the expression level of PD-L1 (CD274) and somatic mutations in the high-risk group were higher than those in the low-risk group. This suggests that high-risk patients may be sensitive to immunotherapy. We further found that the prognosis of patients in the high-risk group was significantly lower than that of patients in the low-risk group, and that patients' prognosis was likely to be worse as the patient's risk score increased. CONCLUSIONS: In conclusion, this study explores the role of lncRNAs in genomic instability and cancer prognosis and provides a new idea for the prognostic prediction of colon cancer.

16.
Thorac Cancer ; 12(24): 3370-3379, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34730281

RESUMO

BACKGROUND: Esophageal cancer is currently the eighth most common tumor in the world and a leading cause of cancer death. SULT2B1 plays crucial roles in tumorigenesis. The purpose of this study is to explore the role of SULT2B1 in esophageal squamous cell carcinoma (ESCC). METHODS: The expression of SULT2B1 and its clinicopathological characteristics were evaluated in ESCC cohorts. Bisulfite genomic sequencing and methylation specific PCR were used to detect the promoter hypermethylation of the SULT2B1 gene. The effects of SULT2B1 on the biological characters of ESCC cells were identified on functional assays. Subcutaneous xenograft models revealed the role of SULT2B1 in vivo with tumor growth. RNA-Seq analysis and qRT-PCR were performed to recognize the targeted effect of SULT2B1 on PER1. RESULTS: SULT2B1 was not expressed or at a low level in most patients with ESCC or in ESCC cell lines, and this was accompanied by poor clinical prognosis. Furthermore, the downregulation of SULT2B1 occurred in promoter hypermethylation. According to the functional results, overexpression of SULT2B1 could inhibit tumoral proliferation in vitro and retard tumor growth in vivo, whereas SULT2B1 knockdown could accelerate ESCC progression. Mechanistically, SULT2B1 targeted PER1 at the mRNA level during post-transcriptional regulation. Finally, PER1 was verified as a suppressor and poor-prognosis factor in ESCC. CONCLUSIONS: SULT2B1 loss is a consequence owing to its ability to promote hypermethylation. In addition, it serves as a suppressor and poor-prognosis factor because of the post-transcriptional regulation of PER1 in ESCC.


Assuntos
Carcinogênese/genética , Metilação de DNA/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas Circadianas Period/genética , Sulfotransferases/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Hepatocell Carcinoma ; 8: 759-771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268259

RESUMO

PURPOSE: By using integrative RNA sequencing analysis, we identified a novel tumor suppressor, serpin family A member 11 (SERPINA11), which is a serine proteinase inhibitor that belongs to the serpin superfamily. However, the function of SERPINA11 in hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the role and molecular mechanism of SERPINA11 in HCC. METHODS: Gene expression patterns of SERPINA11 were analyzed in tissue samples of HCC patients by qRT-PCR. In vitro and in vivo experiments were performed to characterize the function and molecular mechanism of SERPINA11 in the tumor metastasis capacity. RESULTS: SERPINA11 was downregulated in approximately 50% of HCC and significantly associated with metastasis and poor outcome of patients. Functional study demonstrated that SERPINA11 could inhibit cell growth, cell migration and tumor metastasis. Mechanistic investigations suggested that SERPINA11 accelerated urokinase-type plasminogen activator (uPA) degradation to suppress extracellular signal-regulated kinase (ERK1/2) phosphorylation, and thereby subdued metastatic capabilities of HCC cells. CONCLUSION: SERPINA11 plays an important tumor suppressive role in HCC, with possible use as a biomarker and an intervention point for new therapeutic strategies.

18.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536206

RESUMO

PD-1/PD-L1 blockade therapies provide notable clinical benefits for patients with advanced cancers, but the factors influencing the effectiveness of the treatment remain incompletely cataloged. Here, the up-regulation of laminin γ2 (Ln-γ2) predicted the attenuated efficacy of anti-PD-1 drugs and was associated with unfavorable outcomes in patients with lung cancer or esophageal cancer. Furthermore, Ln-γ2 was transcriptionally activated by transforming growth factor-ß1 (TGF-ß1) secreted from cancer-associated fibroblasts via JNK/AP1 signaling, which blocked T cell infiltration into the tumor nests by altering the expression of T cell receptors. Coadministration of the TGF-ß receptor inhibitor galunisertib and chemotherapy drugs provoked vigorous antitumor activity of anti-PD-1 therapy in mouse tumor models. Therefore, Ln-γ2 may represent a useful biomarker to optimize clinical decisions and predict the response of cancer patients to treatment with anti-PD-1 drugs.

19.
Cell Death Dis ; 12(1): 125, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500384

RESUMO

Hepatocellular carcinoma (HCC) is one of the common malignancy and lacks effective therapeutic targets. Here, we demonstrated that ectopic expression of trophinin-associated protein (TROAP) dramatically drove HCC cell growth assessed by foci formation in monolayer culture, colony formation in soft agar and orthotopic liver transplantation in nude mice. Inversely, silencing TROAP expression with short-hairpin RNA attenuated the malignant proliferation of HCC cells in vitro and in vivo. Next, mechanistic investigation revealed that TROAP directly bound to dual specificity tyrosine phosphorylation regulated kinase 1A/B (DYRK1A/B), resulting in the cytoplasmic retention of proteins DYRK1A/B and promoting cell cycle process via activation of Akt/GSK-3ß signaling. Combination of cisplatin with an inhibitor of DYRK1 AZ191 effectively inhibited tumor growth in mouse model for HCC cells with high level of TROAP. Clinically, TROAP was significantly upregulated by miR-142-5p in HCC tissues, which predicted the poor survival of patients with HCC. Therefore, TROAP/DYRK1/Akt axis may be a promising therapeutic target and prognostic indicator for patients with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/genética , Proliferação de Células , Progressão da Doença , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transfecção , Quinases Dyrk
20.
Cancer Res ; 80(24): 5583-5596, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33093168

RESUMO

T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Esofágicas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Animais , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-cbl/genética , Proteína Oncogênica v-cbl/metabolismo , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA